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ABSTRACT

RADIO DETERMINATION ON MINI-UAV PLATFORMS:

TRACKING AND LOCATING RADIO TRANSMITTERS

Braden R. Huber

Department of Computer Science

Master of Science

Aircraft in the US are equipped with Emergency Locator Transmitters (ELTs).

In emergency situations these beacons are activated, providing a radio signal that can

be used to locate the aircraft. Recent developments in UAV technologies have en-

abled mini-UAVs (5-foot wingspan) to possess a high level of autonomy. Due to the

small size of these aircraft they are human-packable and can be easily transported

and deployed in the field. Using a custom-built Radio Direction Finder, we gath-

ered readings from a known transmitter and used them to compare various Bayesian

reasoning-based filtering algorithms. Using a custom-developed simulator, we were

able to test and evaluate filtering and control methods. In most non-trivial con-

ditions we found that the Sequential Importance Resampling (SIR) Particle Filter

worked best. The filtering and control algorithms presented can be extended to other

problems that involve UAV control and tracking with noisy non-linear sensor behav-

ior.
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Chapter 1

Introduction

When aircraft experience jarring landings or crashes, their Emergency Locator

Transmitter (ELT) units are automatically activated. We endeavor to show that a

miniature UAV (5 foot wingspan or less) equipped with a sensor can localize a radio

beacon. Mini-UAVs are an ideal platform because of their low cost, size, and ease of

operation. We employ Bayesian methods to deal with uncertainty and noise. Research

work in this area can be generalized to other UAV-based localization problems such

as locating avalanche victims or lost children.

Federal Standard 1037C [8] issued by the General Services Administration

provides a glossary of telecommunication terms. This glossary defines radiodetermi-

nation as “The determination of the position, velocity and/or other characteristics of

an object, or the obtaining of information relating to these parameters, by means of

the propagation properties of radio waves.” Radiolocation is a type of radiodetermi-

nation relating to position that is mainly accomplished through passive means.

Applications for different types of radiodetermination are diverse and far reach-

ing. This work focuses mainly on transmitter localization; the work is therefore appli-

cable to ELT searches, fox hunts, enemy localization, avalanche victims, and rescuing

lost individuals who have beacons. ELT searches are for downed aircraft as mentioned

above. Fox hunts are events held by amateur radio operators and involve homing in

on a particular transmitter. Enemy localization broadly refers to the tracking and

homing of any enemy transmission. Backcountry adventurers often carry radio trans-

1
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mitting equipment with them for finding buried individuals in avalanches. Individuals

at risk for being lost such as young boy scouts could be encouraged to carry a personal

beacon so that if they become lost they can be located easily.

Radio Direction Finding (RDF) is a type of radiolocation that aims to lo-

cate the transmitter by several successive measurements that yield the angle to the

transmitter. There are several types of sensor systems that can be used to approach

this problem. Each system has relative advantages for specific applications. Details

for how these systems are designed and used can be found from Moell [24] and are

described in Section 2. Initial research indicates that for airborne RDF, homing DF

systems are the dominant choice [24]. This is because aircraft can easily change

course to (almost any) arbitrary heading. Also airborne platforms escape much of

the interference due to multipath problems.

In a typical RDF search using Homing DF equipment: a person would take a

reading and use it to travel in the direction of the transmitter. As the person moves he

or she will continue to take readings to make sure he or she is on the correct path and

make necessary course adjustments. Homing DF equipment offers several advantages:

it can be tuned for a wide frequency range, the unit size can be very small (critical

for a mini-UAV), the sensor is minimally affected by variations in signal strength,

and it is easy for the user to learn to operate [24]. The primary disadvantages of this

ground-based process are (a) the receiver is susceptible to multipath from reflectors

near the antenna, and (b) Line of Sight (LoS) with the transmitter can be obstructed

by obstacles. Both of these problems are significantly reduced when used on aircraft

platforms from altitude.

Currently, Utah County Search and Rescue may be called upon to assist in

several ELT searches per month. Over the period of September 2005 to January

2006 there were approximately 9 ELT calls in which Utah County Search and Rescue

participated. More than 95% [9] of all ELT searches nationwide are false alarms where

2
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Altitude Above Ground Level (ft) Distance in Nautical Miles (nm)
1,500 18
2,000 21
3,000 30
4,000 35
6,000 40
8,000 65
10,000 80

Table 1.1: Signal reception range for different altitudes [7].

the ELT was activated upon a hard landing and the plane, when located, is found

to be in a hangar at the airport where the pilot failed to deactivate the unit after

landing. Utah County is no exception to this national statistic, with most of their

searches resulting from false alarms. Aside from these airport activations, most of

Utah County is sparsely populated and represents a Wilderness Search and Rescue

(WiSAR) type of task.

Utah County procedures for ELT searches involve several volunteers working in

cooperation. One of the main problems is that direction readings must be taken from

relatively high altitudes (see Table 1) to overcome multipath and occlusion problems

presented by hills, mountains, and buildings. This means that some volunteers must

drive high up on the mountains (Wasatch Front) in order to get an accurate reading.

Due to the nature of RDF, one reading is not enough. At least two readings from

different locations must be taken to begin triangulation. More readings are necessary

to confidently predict where the transmitter is. This represents a significant task as

volunteers must drive up mountains multiple times to obtain the readings.

These methods result in a time consuming process to (a) determine if it is a

false alarm or a genuine emergency and (b) actually locate the downed aircraft. In the

case of a real emergency rescue efforts are very time sensitive. Successful rescue efforts

correlate closely with the amount of time it takes to reach the crash site. Therefore,

reducing the amount of time to locate the aircraft should be very beneficial. Reducing

3
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the time to locate the aircraft also has the advantageous side-effect of reducing total

man hours (and therefore the cost) to complete the search and rescue.

Two significant problems in automating RDF on a UAV platform are estima-

tion and control. Estimation of the transmitter position is difficult because of noisy

sensor readings (detailed in Section 3). The accuracy of the estimation is also depen-

dent on UAV position, and therefore the efficiency of any search relies on the control

method employed. Control is difficult because we are searching through a large action

space to try and obtain the estimate as efficiently as possible.

We have implemented particle filtering and the unscented Kalman filter (UKF)

algorithms to deal with the noisy sensor readings. Leveraging Bayesian reasoning,

we can obtain an accurate transmitter location estimate. Filtering is discussed in

Section 3.2.

We have also developed a path-planning controller to expedite search opera-

tions. We do not make the claim of optimality with this controller but instead hope

to show performance increase over manned search techniques. Development of this

controller also represents a proof-of-concept on the mini-UAV platforms. Control

approaches are detailed in Section 3.3.

1.1 Thesis Statement

Mini-UAVs with radio sensors can save time and money in ELT radiolocation com-

pared to traditional approaches. Particle filtering can be employed to compensate for

noisy sensor readings, and intelligent path planning increases the accuracy and speed

of the search.

4
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Chapter 2

Related Literature

2.1 UAV History

Use of Unmanned aerial vehicles (UAVs) began early in the history of aviation. Dur-

ing World War II target drones were used to train anti-aircraft gunners without

risking human life [26]. These initial UAVs were simply remotely piloted full-size

aircraft. Recent innovations in miniaturization and sensor technologies have allowed

the autonomy and capabilites of UAVs to greatly increase.

Mini-UAVs are human-packable units. Mini-UAVs developed and flown by the

BYU MAGGIC Lab [34] are typically five feet or smaller in wingspan. Mini-UAVs

offer several advantages over their larger counterparts. They can fit inside almost any

vehicle and therefore do not require special transportation equipment. The aircraft

and support systems can be carried to remote sites by a few people. No runway is

required because the UAVs are hand-launched and belly-landed.

2.2 Radio Determination

Radiodetermination has a rich historical background. Some of its first applications

were during WWII. Radar was used during the Battle of Britain by the Royal Air

Force as an early warning system for approaching German aircraft. The German

bombers used directional radio transmitters to paint an X over targets in Britain.

When the German bombers reached the specified location, the radio would tell them

5



www.manaraa.com

to release the bombs [38]. The Global Positioning System (GPS) is an excellent

example of modern radiolocation.

For many years civilian and military aircraft alike have carried various types of

homing beacons onboard. In the case of emergency, these beacons can be activated.

Through radiolocation, rescuers are able to find the downed aircraft and perform

rescue or recovery operations. In the US today, aircraft are equipped with ELTs on

a standard basis. These devices operate on international emergency frequencies of

101.5 MHz, 243.0 MHz, and 406.025 MHz.

2.3 SARSAT

SARSAT satellites have been in operation in recent years and are able to accurately

locate ELT beacon transmissions [22]. These satellites have largely eliminated many of

the difficulties experienced in lost aircraft searches in the past. However propagation

time between when the beacons are activated and when searchers recieve coordinates

is still significant. While we have geared our test toward using an ELT type scenario

we believe it also extends to any type of beacon homing that the SARSAT system is

not currently equipped to handle.

2.4 Flight Control

UAVs are required to exercise flight control either autonomously or under human

control. Jonsson [18] defines two separate tasks for flight control: aviation and navi-

gation. Note that Jonsson extends work by Abbott [1], but Abbott himself does not

actually define the tasks of aviation and navigation. Quoting from [18]:

Each of these categories [aviation and navigation] may be defined by

using a modified series of definitions described in Abbott (1993). Avia-

tion may be defined as the process “of adjusting or maintaining the flight

6
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path, attitude, and speed of the [aircraft] relative to flight guidance re-

quirements.” Navigation may be defined as the process of “developing the

desired plan of flight. . . and monitoring its progress.”

In the context of a UAV, aviation represents the actual second-to-second flying of

the UAV. This can include maintaining a constant altitude, holding an attitude,

keeping sufficient airspeed, etc. Aviation can be accomplished either manually or

autonomously with the autopilot mentioned below. Navigation is often accomplished

through the development of waypoints that can be followed by the autopilot. Way-

points can be produced by human operators or algorithmically from some meaningful

sensor inputs.

2.5 Filtering and Control

A great deal of work has been done regarding the problem of obtaining filtered es-

timates of state variables from noisy sensor measurements. Classic approaches such

as the Kalman Filter [23, 36] do not perform well in non-linear, non-gaussian en-

vironments, which are often present in tracking and target motion analysis (TMA)

applications. Adaptations such as the Extended Kalman Filter (EKF) and Unscented

Kalman Filter (UKF), as well as working in polar coordinates [2], improve perfor-

mance but are often not sufficient. Recent work involving Sequential Monte Carlo

Methods [10] has shown that Particle Filters are effective at handling non-linear sys-

tem and sensor functions as well as non-Gaussian noise distributions [3, 13, 14, 16].

The problem of transmitter localization from a UAV platform is very similar to

the problem of Bearing-Only Tracking (BOT), also refered to as Angle-Only Tracking.

In fact the UAV application with the sensor described above is a special case of

BOT because bearings are only available when the UAV is pointed directly at the

transmitter. BOT has been looked at by several researchers including [4, 10, 13, 14,

7
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19–21]. The idea of changing the coordinate system and employing particle filtering

has been discussed by papers such as [6].

The BOT problem is difficult because, as Tremois [32] points out, target es-

timation is dependent on observer control. Many other estimation problems rely

on the separation principle where control and estimation are independent. Re-

searchers [17, 25, 27, 32] have tried to pose this correlation in terms of an optimization

problem in order to try and find the optimal observer control algorithms. Key tools

in the evaluation are the Fisher Information Matrix (FIM) and Cramer-Rao Lower

Bound (CRLB). The Fisher Information quantifies the information that an observ-

able variable gives about an unobservable variable. The observer wants to obtain

sensor readings that maximize the amount of information contributed with each new

reading.

According to our knowledge, not a lot of research has been done with the RDF

problem from UAV platforms, especially mini-UAVs. Frew et al. [12] discuss using

a team of UAVs that are part of a heterogeneous sensor net to locate transmitters.

This discussion involves the UAVs measuring signal strength and coordinated com-

munication to localize transmitters. However signal strength in natural environments

is not always closely correlated with distance.

Pine et al. [28] simulate two UAVs searching for a maritime beacon in a BOT

scenario. Control of the UAVs heading is determined by minimizing a cost function

at each time step. Several cost functions are evaluated and show how the area of

uncertainty about the transmitters location is reduced. The resulting flight paths are

not directly to the transmitters but instead resemble arcs and angular legs that allow

accurate localization of the transmitter before the transmitter is intercepted.

8
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Chapter 3

Methods

Manned search aircraft can be very fast at homing in on beacons. However, the

cost of operating these vehicles during search operations is significant. Additionally

there can be troublesome “scramble” time associated with getting these aircraft into

the air and searching. Elimination of this type of searching could represent significant

monetary savings to county search and rescue budgets. We have designed, created,

simulated, and tested various approaches to mini-UAV based RDF. The focus is

on filtering methods. We (a) identify hardware, (b) identify metrics to evaluate

and understand our techniques and performance, (c) implement filtering techniques

on real data, and (d) implement control techniques for automated radiolocation in

simulation.

3.1 System Architecture

3.1.1 Hardware

Aircraft

Our airframe is a 5-foot-wingspan flying wing UAV similar to those already used in

the BYU MAGICC Lab. This UAV uses the Kestrel Autopilot (see Section 3.1.1).

The autopilot’s sensor suite includes a 3-axis accelerometer, a 3-axis gyro, a GPS

reciever, pressure sensors [static and dynamic], and a video camera.

9
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Figure 3.1: The Virtual Cockpit program. This constitutes BYU groundstation con-
trol.

Radio Equipment

We utilized a dual-dipole homing DF system in our experiments because of our small

platform and airborne search setting. Our work includes building the RDF sensor

and UAV. See Section 3.1.3.

3.1.2 Software

We used a small set of software programs to support our search task. Virtual Cockpit

(Figure 3.1) is a ground control program used for the actual UAV operation. We

developed a graphical UAV simulation environment with radio simulation support

called RAH-DEE-OH to test filtering and path planning methods. This simulator

models radio propagation including multipath using a ray-tracing engine.

The Kestrel autopilot developed by BYU [34] offers a high level of autonomy.

The autopilot is typically controlled via a Ground Station which consists of a laptop,

radio modem, and video relay equipment. The task of aviation can be performed in a

10
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Figure 3.2: The Little L-Per from L-Tronics. This is an example of a dual-dipole type
homing RDF unit.

number of different modes and does not require user control. This allows the operator

to focus on the task of navigation. This means that the operator can assign waypoints

which the autopilot will automatically fly to. The operator is then free to monitor

progress and plan future actions. The autopilot also offers heading, roll, and pitch

control. Ground station management is typically done through the Virtual Cockpit

program (Figure 3.1) also developed at BYU [34]. The UAV offers a programatic

interface either directly from a radio modem or through the Virtual Cockpit.

3.1.3 Radio Equipment

Research indicates there are diverse direction-finding systems. A brief description of

select systems is given below. We implemented a Homing DF system because of its

relative advantages. We present the others because it is good to be aware of different

methods available and because a reasonable particle filtering model can be developed

for any of them.

11



www.manaraa.com

• Directional Antennas: These antennas produce the strongest signal when the

receiver is pointed toward the transmitter. As they turn away they quickly lose

the signal entirely. Yagi and Quad antennas are examples.

• Doppler Based: These systems exploit doppler properties of waves to recover

direction given that the transmitter and receiver are moving in relation to each

other.

• Homing Direction Finders (Homing DFs): These systems give a left-right, front-

back, or null indication. This gives an indication of which direction to turn to

point toward the transmitter and “home in” on the signal.

One example of a homing DF is the L-Per from L-Tronics. This type of

device uses four antenna elements: two passive and two active antennas. One passive

and one active antenna are mounted on each side of a beam (see Figure 3.2). This

configuration can conceptually be thought of as two antennas, one on the left and

one on the right. The unit essentially measures the phase difference between the two

incoming signals. If the transmitter is to the left, the left indicator light comes on, and

vice-versa for a transmitter to the right. This results in a conceptual reception pattern

shown in Figure 3.3. The cardiods represent which signal from the two antennas the

phase comparator sees first. When both signals are equal the reading is considered a

“null”, which means that the transmitter is either directly in front or directly behind

the receiver. This results in a null ambiguity and must be dealt with.

3.2 Sensor Processing

3.2.1 Noisy Sensor Readings

Although each measurement taken with a homing DF unit yields a heading to the

transmitter, this reading is inherently noisy [7]. Noise sources include many factors.

Specifically the radio measurements can themselves be off by several degrees in either
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Figure 3.3: A switched cardiod antenna reception pattern [24].

direction. This error is compounded by the fact that the compass used to take heading

measurements can also be off by a few degrees. This combines for an average error of

about plus or minus a dozen degrees. As distances from the transmitter increase, a

few degrees can lead to the estimate of the transmitter position being off significantly.

Readings are also affected by multipath and occlusions. Multipath is a com-

mon problem in many radio-based applications. Reflections can be found in many

environments. In the presence of reflections the readings taken from the homing DF

unit can point toward the reflection rather than toward the transmitter. This means

that the transmitter can actually appear to be in two or more locations simultane-

ously. Much of the problem of multipath is overcome by performing RDF from the

air. Additionally, multipath is more pernicious in urban environments with large

buildings acting as excellent reflectors. We constrain our approaches to wilderness

environments.

Occlusions occur whenever line of sight between the transmitter and reciever

cannot be established. There could be a hill, cliff, or anything else in the way. Read-

ings taken when line of sight is blocked may not correlate with the true position of the

13
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Figure 3.4: Heading of the UAV when a null is measured.

transmitter. Airborne RDF will have some multipath and occlusions, and automated

RDF approaches should be equipped to handle these probabilistic readings. One way

to deal with noisy readings is to model the readings as probabilistic pertubations of

the ideal sensor behavior.

3.2.2 Nonlinear Sensor Readings

As illustrated in Figure 3.4 the heading of the transmitter from the UAV location is

given by

6 ABC = tan−1
(
Cy −By

Cx −Bx

)
(3.1)

where C is the transmitter location, B is the UAV location, and A is used to represent

an origin. Since the readings are polar, the transformation to Cartesian is non-

linear. We see this by the arctangent function. Although the distribution of the

angle measured by the RDF unit is likely Gaussian with respect to the polar domain

(ignoring the possible presence of terrain interference in many locations), this non-

linear transformation results in a non-Gaussian distribution in the Cartesian domain.

When the UAV begins searching, it takes sensor readings. We leverage a model

of how the transmitter and RDF equipment interact to use sequential RDF readings

and develop an estimate of where the transmitter is. We restrict attention to the case
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where the transmitter is stationary. The autopilot system provides us with filtered

estimates of UAV position and heading. Our RDF equipment provides us with a

heading to the transmitter. We then combine all of these elements using the particle

filter.

3.2.3 Bayesian Reasoning

We leverage Bayesian reasoning to estimate where the transmitter is during any given

time while the UAV is searching [31]. Bayes law states

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
(3.2)

where A represents an estimate of the transmitter location and B represents an RDF

reading based on UAV location and heading. For sequential estimation Bayes law can

be thought of as

posterior =
likelihood× prior

normalizing constant
(3.3)

We use the probabilities associated with the RDF system to obtain this esti-

mate as well as some confidence value associated with our estimate. We answer the

question, “What is the probability distribution of the transmitter position given a

collection of RDF readings?”

3.2.4 Nonlinear Bayesian Tracking

The Bayes rule above is put into service by the Bayes Filter. Recursive Bayesian

Filtering attempts to estimate a state x by recursively evaluating incoming sensor

readings z. The general state and sensor models are given below. For many appli-

cations such as Bearings Only Tracking (BOT) these equations do not lend well to

simplification as a linear approximation.
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The state evolution model is given by

xk = fk(xk−1, vk−1) (3.4)

where xk is the state at time k, which is a function fk of the state x and process noise

v at time k − 1. The sensor model represents the sensor measurement zk at time k

as a function hk of the state x and sensor noise n at time k:

zk = hk(xk, nk) (3.5)

3.2.5 Particle Filter

The particle filter is a form of the Bayes Filter that represents using samples of these

distributions. These samples are known as particles. The particles essentially allow

us to combine several readings and their associated probabilities, as well as system

and sensor noise knowledge [10]. This is possible even given non-linear functions

fk and hk, and non-Gaussian distributions of vk and nk. We use this information

to determine the probability that a particular particle represents the true location

of the transmitter. For example one transmitter can actually appear to be in two

or more places because of multi-path. Through resampling [3] we can change the

location of particles as a function of our observations. The particles with the highest

probability and the closest groupings represent a good estimate of the true location of

the transmitter. Particle filters approach the optimal (w.r.t. true position distribution

given our readings) estimate as we use more particles [31].

The particle filter can be conceptualized as Figure 3.5, where x0. . .xn repre-

sent the state at time t = 0, 1, . . . , n. The sensor readings are represented by z1. . . zn.

The state transition f shows how the state changes over time. For the RDF prob-

lem we present, we have constrained the transmitter so that it does not move (see
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Figure 3.5: A representation of how the particle filter approximates the true state.

Section 3.2.6) therefore ft = ft−1. The sensor function h represents how measure-

ments relate to the true state. The estimate of the state over time is represented by

p0. . . pn where p0 is a vector and there are n such vectors. Each vector is a collection

of particles, which provide an estimate for characteristics of the true state at time t.

p′0. . . p′n are the predictions of the state at time t + 1. So, p′t+1 is the predicted state

at time t + 1 given only sensor readings up to time t. l0. . . ln are sets of weights w

corresponding to each particle. The weights are updated using a Bayesian likelihood

estimator [3]:

wi
t = wi

t−1 ∗
p(zk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1, zk)
(3.6)

The importance distribution is represented by q(xi
k|xi

k−1, zk), which is often

approximated as p(xi
k|xi

k−1) to simplify sampling [3]. This simplifies the weight update

to the following:

wi
t = wi

t−1 ∗ p(zk|xi
k) (3.7)
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We discover p(zk|xi
k) empirically through controlled field tests with a known trans-

mitter location.

We define the function R as the resampling function where a new set of par-

ticles is generated using the weights of the particles to compute a cumulative distri-

bution function (CDF) and randomly drawing from it. A graphical plot of R can be

seen in Figure 3.6 as we used it.

3.2.6 System Model

We restrict attention to the case where the transmitter does not move (remains sta-

tionary). However due to observation noise we cannot be sure of the position. To help

with this resampling our system model includes some noise but remains centered at

the same location. We have tried the Normal distribution with various standard devia-

tions. Thus our system function F can be characterized by p(xk|xk−1) = N(xk−1,Σk),

where xk is the position of the transmitter at time k and xk−1, is the position at the

previous time step. Σk is the covariance matrix characterizing how wide the distri-

bution is. For our case Σk is a scaled identity matrix. Additionally Σk = Σk−1. We

must be able to sample from this pdf during the system update phase of the filter.

Results of various parameters can be found in Chapter 4.

To make the system model more robust we have implemented a Multiple Model

Particle Filter (MMPF). Specifically this means that our system model probability

distribution is a combination of two normal distributions. Since we have confined our

system to only allow for stationary targets, the mean of both distributions is centered

about xk−1. The variance of the first distribution is very small, meaning that most

particles at time k are close to the particles at time k−1. The variance of the second

distribution is larger and attempts to populate space far away with sparse particles.

This gives us resistance against converging to a local maximum because there is some

particle presence far away from the maximum.
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Figure 3.6: Graph of the Normal pdf with mean µ and variance σ2. The MMPF
implemented is a mixture of two Normal distributions with the same mean but one
large σ and the other small.

3.2.7 Sensor Model

We propose that the sensor model be based on the sensor physics derived from Figure

3.3. With some work we can know that when the sensor reads a null the aircraft

is heading toward the transmitter. We compare various distributions to see which

most accurately models the true sensor. The model will be based on the probability

of the transmitter location by computing the angle (using arctangent) between the

UAV position and the estimated transmitter location. For the sensor model we will

compute the probability of the sensor reading given our transmitter estimate, p(zk|xk),

where zk is the sensor reading at time k. Instead of sampling from the Normal pdf (as

in the system model) we compute the probability using the cumulative distribution

function for the Normal.

19



www.manaraa.com

Figure 3.7: Representation of the UAV trying to take a straight line path to the
transmitter to accomplish the shortest time to intercept.

3.3 Control

UAV control is accomplished by the Kestrel Autopilot (see Section 3.1.1) using the

Virtual Cockpit GUI (Figure 3.1).

3.3.1 Time to Intercept

Because the shortest distance between two points is a line, the best path from the

launch site to the transmitter will usually be the direct one. The control we propose

to implement for this will be an adaptation of what is normally done for manned

RDF (see Figure 3.7). With the dual-dipole setup this means that we first (a) resolve

the null ambiguity and then (b) “surf” or “ride” the null to the transmitter.

We accomplish the first task (a) by commanding the UAV to fly in a circle.

The BYU autopilot already supports the ability to orbit a waypoint. As we fly in a

circle we will observe various left and right indications as well as two null readings,

which are labeled in Figure 3.7. We can resolve which null faces the transmitter
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because as we turn left from the transmitter, the RDF unit will tell us to turn right

(and vice-versa). If we are facing away and we turn left it will tell us to keep turning

left.

The second task is accomplished by heading in the direction of the null (to-

wards the transmitter) which is determined during step (a). As long as the reading

is null we continue straight. Whenever the RDF unit tells us to turn we turn in that

direction. This can be done by commanding the UAV to fly a heading which the

autopilot already supports. Once the left and right fluctuations become too rapid

this means that we are near the transmitter and have likely reached it. Additional

confirmation may be had by video relay or other means.

Task (b) also requires a momentum element that enables the aircraft to keep

flying in a generally consistent direction. This is just a low pass filter (LPF) of the

heading. This will allow it to overcome temporarily erroneous readings caused by

multi-path reflections or signal noise, etc. In the event that signal is lost for a longer

period of time, the UAV will need to switch back to task (a) and possibly employ

some other signal finding strategy.

3.3.2 Time to Localization

Rescue workers need to be present at a crash site in order to render aid. We therefore

assert that if the UAV can minimize localization time then the rescuers can begin

traveling to the site as soon as it can be found. The task of video relay serves to

confirm the site and to help plan the rescue, but this can be carried out after the

rescuers have begun to travel toward the site.

We hypothesize and empirically show that when RDF readings are taken for

the purpose of localization, excellent resolution in terms of location can be gained

by traveling perpendicular to the direction of the transmitter or in other words, on

a circle centered at the radio transmitter with some radius d (Figure 3.8). This may
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Figure 3.8: Representation of the UAV approximating a circular flight pattern to
estimate the transmitters location. A time to localization approach.

seem counterintuitive to the casual observer because the UAV is not heading towards

the transmitter. This means that after a first reading is taken, then the UAV should

travel perpendicular to that and after some time it can take another reading. It

should then travel perpendicular to the line defining the second reading, and so on.

If readings could continuously be taken then we would end up with a circular path

around the transmitter. We test various flight patterns to verify which flight paths are

reasonable in terms of resolution for the localization task. This is dependent on the

way we combine readings; see Section 3.2.2. Due to the nature of our RDF equipment,

the UAV cannot take readings while it is flying perpendicular to the transmitter and

therefore we will use a polygonal approximation of a circle.

3.4 Validation

The particle filter and homing algorithms are evaluated in computer simulation and

with real world test readings. For the real world test, we use both metrics defined

below and compare the homing and particle filter methods to each other. In addition
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to measuring time we will also consider distance traveled by the UAV. We expect that

the distance traveled by the UAV during localization using the particle filter may be

several times less than the distance traveled by the homing algorithm. We expect

that both methods will be a significant improvement in terms of time over a manned

search.

3.4.1 Metrics

We believe that there are two significant metrics by which to classify and measure

algorithms for RDF search. These are (a) Time To Intercept (TTI) and (b) Time

To Localization (TTL). These represent two different measures in that (a) means the

amount of time it takes between when the UAV is launched until the UAV is directly

above the transmitter, and (b) means time from launch until the target’s location has

been obtained with some degree of confidence. We believe that both of these metrics

are important, and our approaches will be geared toward both, with emphasis on the

latter.

3.4.2 Other Localization Methods

In addition to the homing and particle filter algorithms we implemented some of the

following alternatives for comparison. These other methods may prove to be simpler

or less computationally intense.

• Grid Filter - each sensor reading is modeled as a cone. As more readings are

taken the cones are added on top of each other. The probabilities are added in

an accumulator type approach. The regions with the highest values are expected

to be the best guess of transmitter location.

• Line Filter - linearization based on computing intersections of radio readings.
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Figure 3.9: Screen shot from the RAH-DEE-OH simulator showing a simple Vector
Field. This represents a non-linear radio field computed using raytracing techniques.
The red X indicates the position of the simulated transmitter. The lines act as simple
occlusions as well as reflectors.

• Unscented Kalman Filter (UKF) - A sigma point Kalman filter that gives a

better nonlinear approximation compared to KF or EKF which only propagate

the mean through the non-linearity [35].

3.4.3 Simulation

We have implemented the various TTI and TTL methods in simulation. The sim-

ulation environment RAH-DEE-OH is a 2D flat world that simulates the ability of

the UAV to maneuever and a simplified model of the radio sensors (Figures 3.9 and

3.10). We used the simulator to develop and implement a UAV flight controller. We

tested the filtering approaches mentioned above in our simulation environment. This

environment allows us to compare different methods empirically based on either met-

ric. We were also able to hone control methods before putting a platform in the air.

The RAH-DEE-OH simulator is implemented using Visual C++ and DirectX.
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Figure 3.10: An agent autonomously gathers readings in the RAH-DEE-OH simula-
tor.
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Chapter 4

Results

4.1 Datasets

The methodology for gathering readings used in the datasets was to use the Ramses

DF1C Foxhound Direction Finder. The receiver was tuned to a frequency of 135.175

MHz which is the Provo Automated Weather Observation Station (AWOS) transmit-

ter. The transmitter has a known position of approximately 40 degrees 12 minutes

50.25 seconds North and 111 degrees 43 minutes and 35.91 seconds. Readings were

gathered using the Ramsey DF1 unit built as mentioned above. When the ”null”

readings were found using the unit, a compass reading and a GPS position were

recorded. We used a vehicle to drive between reading locations, which were often

miles apart.

4.1.1 Surround

The Surround Dataset compromises a series of readings taken from the ground around

the Provo, UT airport in November 2006 (Figure 4.1). All readings were within 1

mile of the transmitter. Readings were taken from the roads surrounding the airport.

As a result a full 360 degrees of readings was achieved. No other dataset has such a

high degree of angular separation between readings. This set may represent a scenario

where the techniques in this paper are employed to find a transmitter at close range.

In other words in the “last mile” of the search.
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Figure 4.1: Visualization of the Surround Dataset. Locations of the readings are
shown by the circles surrounding the airport. The lines indicate the bearing of the
readings. The icon in the center of the airport approximates the known location of
the transmitter (shown only for reference).

4.1.2 Lake

The Lake Dataset is a series of readings taken on the west side of Lake Utah (Fig-

ure 4.2). The transmitter is on the east side of Lake Utah. The readings were taken

at a general range of more than 10 miles. The readings represent about a 45-degree

sweep with respect to the transmitter. This set approximates an orthogonal path

planning methodology. The Lake Dataset represent a search scenario where the loca-

tion of the transmitter is roughly known to within a dozen or two dozen miles. It also

represents a scenario where direct navigation to the transmitter may not be possible

or desired (because the distance or terrain is too difficult).

4.1.3 Hills

The Hills Dataset represents the most challenging set for a number of reasons. First

the readings were taken from a much greater distance compared to the other sets.
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Figure 4.2: Visualization of the Lake Dataset. Locations of the readings are shown
on the left side of the map and the bearings are represented by the lines. The icon on
the right side of the map approximates the known location of the transmitter (shown
only for reference).

All readings were taken from the ground at a range of more than 20 miles. The

area where the readings were taken was immediately adjacent to mountains on the

west side. These mountains function as excellent reflectors and generate a source of

multipath. Two distinct modes are apparent in the data as a result. Lastly all the

readings were taken in a constricted area, the result being that the angular separation

of the readings is minimal and represents only a few degrees (about 5 degrees).
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Figure 4.3: Visualization of the Hills Dataset. Locations of the readings are shown on
the lower left side of the map and the bearings are represented by the lines. The icon
on the top right side of the map approximates the known location of the transmitter
(shown only for reference).

4.2 Filtering Performance

4.2.1 Grid Filter

The Grid Filter is attractive because it is very simple conceptually and very easy to

implement. No resampling is required. The disadvantage is that lots of CPU cycles

are wasted on grid cells that have very low probability. The algorithm that we used

for the Grid Filter is shown in the pseudocode in Algorithm 1.

The probability of a reading given a particular transmitter position x which is

a 2 dimensional vector (northing and easting represented by i,j in the pseudocode) is

taken from the normal distribution pdf that is given by

p(zt|x) =
1

σ
√

2π
exp−

(θ−µ)2

2σ2 (4.1)
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Algorithm 1 The Grid Filter

// Initialize an NxN grid of weights to normalized values (total = 1.0)
for i = 0 to N − 1 do

for j = 0 to N − 1 do
weights0[i][j] = 1/(N2)

end for
end for
// Loop through z the vector of our sensor readings
for each z do

for i = 0 to N − 1 do
for j = 0 to N − 1 do
weightsk[i][j] = weightsk−1[i][j] ∗ p(zt|xi,j)

end for
end for
Normalize all weights
x̂k = weighted mean of weightsk

end for

Grid Size Grid cell area (km2)
52 46.58608516
102 11.64652129
252 1.863443406
502 0.465860852
1002 0.116465213
5002 0.004658609
10002 0.001164652

Table 4.1: Grid Density.

where θ is the measured angled according to the sensor equipment and µ is the actual

angle between the location of the reading and the center of the grid cell. Last σ is

the standard deviation representing the accuracy of the device used to take readings.

For use with the grid filter σ = 0.05 (calculated by taking readings against our known

transmitter position). When computing probabilities discontinuties between 0 and

2π must be accounted for.

Results using the Grid Filter can bee see in Figure 4.4 and show that the Grid

Filter does better as distance from the transmitter decreases and when the grid size

is above some minimum value. The search area we used for our tests was 34.127km

by 34.127km in size. Grid density for select test values is shown in Table 4.2.1.
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Figure 4.4: Grid filter performance on different datasets

On the datasets we see that the Grid Filter did quite well on the surround

dataset, even better than both the Particle Filter and the Line Filter. We can also

see that the results were good with a relatively small grid of less than 200x200.

Results on the Lake dataset were perhaps useful. Performance on the Hills dataset

was far less than desirable and was probably due to limited resolution for the grid cell

probabilities. For out tests double precision was used but increasing precision and

choosing a high grid density would likely improve results.

4.2.2 Line Filter

The line filter is a very simple algorithm we implemented to see how it compared with

more established filtering techniques. The algorithm is not computationally intensive

as long as there are not too many readings. This is due to the fact that finding the

intersection of lines is a relatively simple operation (and can even be implemented

in hardware for exceptionally fast runtimes). The resulting collection of intersections

can then be treated with some statistical method such as finding the mean, median,

or mode. This can be used to estimate the transmitter position. In our case we

used the median. Results (Figure 4.5) were impressive for the surround dataset and
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Figure 4.5: Line filter performance on different datasets

runtimes were orders of magnitude smaller than either the Particle Filter or Grid

Filter method. The Lake Dataset performance was useful. The Hills dataset was

dismal. Interestingly, when we combined different data sets together, the Line Filter

worked very well if the Surround set was included.

Each reading contains a position (northing, easting) and a heading θ these

elements combined define a line in two-space. The line is defined as intersecting the

northing and easting point and having a slope related to the heading of the reading.

This information is then processed using the algorithm presented in Algorithm 2.

Algorithm 2 The Line Filter

for each line A in Readings do
for each line B in Readings do

if A!=B then
Find intersection point of A and B // Allow only one
Add intersection point to set C

end if
end for

end for
Compute median of set C

33



www.manaraa.com

Algorithm 3 The Unscented Kalman Filter (adapted from [35])

// Initialize with:
x̂0 = E[x0]
P0 = E[(x0 − x̂0)(x0 − x̂0)

T ]
x̂a

0 = E[xa] = [x̂T
0 0 0]T

P a
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ] =

 P0 0 0
0 Pv 0
0 0 Pn


for k = 1 to ∞ do

// Calculate Sigma Points:

χa
k−1 =

[
x̂a

k−1 x̂a
k−1 ±

√
(L+ λ)P a

k−1

]
// Time update:

χx
k|k−1 = F

[
χx

k−1, χ
v
k−1

]
x̂−k =

2L∑
i=0

W
(m)
i χx

i,k|k−1

P−k =
2L∑
i=0

W
(c)
i

[
χx

i,k|k−1 − x̂−k
] [
χx

i,k|k−1 − x̂−k
]T

γk|k−1 = H
[
χx

k|k−1, χ
n
k−1

]
z−k =

2L∑
i=0

W
(m)
i γi,k|k−1

// Measurement update equations:

Pz̃k z̃k =
2L∑
i=0

W
(c)
i

[
γi,k|k−1 − ẑ−k

] [
γi,k|k−1 − ẑ−k

]T
Pxkzk =

2L∑
i=0

W c
i

[
χi,k|k−1 − x̂−k

] [
γi,k|k−1 − ẑ−k

]T
K = PxkzkP

−1
z̃k z̃k

x̂k = x̂−k +K(zk − ẑ−k )
Pk = P−k −KPz̃k z̃kK

T

end for
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4.2.3 Unscented Kalman Filter

The Unscented Kalman Filter (Algorithm 3) represents a good compromise between

computational efficiency and power to represent non-linear sensor models. The Ex-

tended Kalman filter only propagates the mean of the state estimate through the

non-linear models. The UKF and other sigma point Kalman Filters improve upon

this by propagating a set of well chosen points through the non-linear model (Un-

scented Transform). The EKF captures the posterior mean and covariance to the

first-order (Taylor series expansion) for any non-linearity. The UKF can accurately

capture the mean and covariance (Figure 4.6) to the 3rd order [35]. The UKF incor-

porates a scaling parameter λ defined as

λ = α2(L+ κ)− L (4.2)

Where α determines determines the spread of sigma points about the mean we used

α = 0.001. β incorporates prior knowledge about the distribution, for Gaussian

distributions β = 2. κ is a secondary scaling parameter usually set as κ = 0. In our

tests we found that the UKF did quite well but was parameter sensitive. For instance

the initial covariance of the starting distribution heavily influence results but there

did not seem to be an intuition for what covariance should be selected. Figure 4.7

shows the influence of the covariance. For this test the mean of the initial distribution

was a random variable with a gaussian distribution.

An example of the estimate progression for the Lake dataset can be seen in

Figure 4.8. Results for the Surround dataset were somewhat useful. Results for the

lake dataset were second only to the Particle Filter. Results for the Hills dataset were

probably not useful.
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Figure 4.6: The UKF does a better job than the EKF at capturing the true mean
and covariance (notation adapted from Wan [35]).
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Figure 4.7: Influence of Initial Covariance using the Lake set. The mean of the initial
covariance was a Gaussian distribution about the known location of the transmitter.
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Figure 4.8: Graphical representation of the progression of the state estimate using
the Unscented Kalman Filter (UKF). The covariance of the state estimate reduces as
more readings are considered.

37



www.manaraa.com

4.2.4 Particle Filter

The Particle Filter did well on the datasets. Accuracy of transmitter location esti-

mates were highly dependent on the number of particles used. Increasing the number

of particles improved performance but followed a law of diminishing returns. As in-

creasing the number of particles dramatically affects run time performance, it is wise

to pick the lowest number of particles that still gives desirable accuracy. Figure 4.9

shows results of all three datasets using from 100 particles to 10,000.

It is important to note that errors shown are averages over 1000 runs. This

means that although the performance of 1000 or 2000 particles appears good, the

variance is very high. This is illustrated by Figure 4.10 which shows reduction of

standard deviation versus number of particles on the Lake Set. Since the particle

filter is meant to be used in an on-line realtime environment we want the variance

to be quite low. This means that for the Lake Set choosing over 4000 particles gives

significant improvement over using only 1000 or 2000 particles.
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Figure 4.9: State Estimation error versus number of particles for three datasets. These
curves approximate an arctangent where initially increasing particle numbers greatly
improves performance but quickly yields diminishing returns as particle numbers grow
larger.
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Figure 4.10: Standard Deviation in error estimates for the Lake dataset. We see
that increasing the number of particles guarantees more consistent performance of
the Particle Filter

In analyzing performance, another variable to consider was the modeled sys-

tem noise. We found that filter performance was not very sensitive to this parameter.

Although we found a “best value” for the system noise, several values yielded reason-

able results. Figure 4.11 shows that sigma of 90 had the least error.
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Figure 4.11: The Particle Filter as formulated is not very sensitive to the modeled
system noise parameter. For the Lake dataset error was within a few meters for all
values tried. Sigma of 90 yielded the lowest error.
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Summary

For simple datasets, simple filtering algorithms will often give reasonable performance.

Figure 4.12 shows that for the Surround dataset all of the filters performed well. In

fact the Grid Filter and Line Filter both did better than the Particle Filter. For

more difficult datasets, the Particle Filter quickly showed vast improvement over the

other filters. For the Lake dataset, the Particle Filter gave very nice performance.

For the Hills dataset, performance was not perfect, but it was far better than any

of the other filters. The figure also shows that filter performance can be a tradeoff

between computation time and accuracy. The Line Filter runs very fast and produces

acceptable accuracy for some datasets. The UKF represents a good blend between

accuracy and computational efficiency. The Particle Filter (and in some cases the

Grid Filter) runs much slower but estimates are quite accurate.
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Figure 4.12: Head to Head comparison of Filtering methods. Line Filter and Grid
Filter do reasonably well on simple datasets. The Particle Filter does far better on
more complex datasets. The UKF also does well and is computational less demanding
than the Particle Filter.
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4.3 RDF versus Visual Search

It is likely that a radio sensor alone cannot be relied upon to find transmitters without

oversight from an expert operator and sometimes other search methods. It may be

useful to think of the radio sensor being used to perform a “coarse” search and then

using some other method for the “fine” or local search. It is not our purpose to specify

exactly how this other type of search would be carried out. One possibility is WiSAR

personnel on the ground searching. Another alternative is to have the UAV flying

overhead using a video camera with an operator to identify the transmitter (such as

a crashed plane). For evaluation purposes we will compare against a visual search

conducted using the UAV with a video camera on board.

We have identified two important metrics for evaluating Filter and Control

performance, Time to Intercept (TTI) and Time to Localization (TTL). Both metrics

rely on an outside source (such as a UAV operator or personnel on the ground)

to confirm that the transmitter has been localized or intercepted. The transmitter

is considered localized when the operator knows where the transmitter is (can see

it in video or personnel on ground confirm visual). The transmitter is considered

intercepted only if the UAV is in the immediate vicinity of the transmitter when

localization is achieved.

We define TTI to be the time required to travel from the UAV’s intial location

to the transmitter location. This time is dominated by the distance between the initial

location and transmitter location. The sensor and radio propagation properties are

not always ideal and we must rely on the UAV operator to overcome “loops” and

other anomalies while skiing the gradient toward the transmitter. Additionally there

may be some time for the operator to perform the final “near field” search of the

transmitter which is not neglibile.
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ttotalsearchtime = (positiontransmitter − positionuavinitial)/velocityuav (4.3)

+ tlostinloops + tnearfieldsearchtime (4.4)

If we define TTL to be the time required to gather RDF readings plus the

time to do a non-radio based search to confirm location,

ttotalsearchtime = trdfsearchtime + tothersearchtime (4.5)

For comparison purposes we will present some theoretical search times using

the UAV to visually search an area. We make no guarantees about whether the sensor

or operator can actually detect the transmitter (crashed airplane) and realize that

their are many factors such as terrain or foliage that may make it impossible to see

the transmitter. Instead, we assume that if the transmitter falls within the video

sensor footprint the operator will be able to identify it successfully. Our hope is to

show some rough calculations on how long it would take to exhaustively cover a given

area. We specify exhaustive in the sense that the camera flies over everything in the

search area. There is no guarantee that anything actually would be seen.

The information we present corresponds to utilizing a mini-UAV flying wing

similar to those frequently employed by researchers at BYU currently. These vehicles

fly at a cruise airspeed of 14 meters/second. Their nominal operational altitude (for

our purposes) is 100m AGL. The planes are typically equipped with a 60-degree fov

(field of view) lens and offer resolution of about 640x480 pixels. When flying at 100m

AGL the sensor footprint is roughly 115m x 115m. This configuration means that in

one hour of time the UAV can search an area approximately 5.796 km2.

When quantifying performance for the UKF filter on the lake dataset we found

that an initial normal distribution with σ = 3925m yielded best results. According to
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rules for normally distributed data this means that 99% of the time the target can be

found within 10.11km of µ0 our intial guess. A circular area with radius 10.11km has

an area of 321.15km2. Using the UAV and camera sensor described above, it would

take approximately 56 hours (2.3 days) to search the area. If we reduce the search

area so that we have 95% confidence that the transmitter will be found, we get an

area of 185.92km2 with a search time of 33 hours (1.34 days).

The RDF sensor and filtering techniques we have presented have the potential

to greatly reduce the search area. For example, after approximately 40 minutes of

gathering sensor data the transmitter was located to within 1.1km radius or an area

of 3.80km2. It would only take 39 minutes to search this area with the camera sensor

given our assumptions previously stated. This approach represents a savings of about

55 hours compared to the scenario previously framed.
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Chapter 5

Conclusions and Future Work

Bayesian Filter methods can be successfully employed to localize radio trans-

mitters given noisy sensor readings. These applications include but are not limited

to finding downed aircraft (ELTs), fox hunts, enemy localization, avalanche victims,

and lost individuals with personal beacons. We demonstrated how to employ a simple

Homing Direction Finder unit to take bearing readings and locate radio transmitters.

Datasets collected represent near (< 1 mile), midrange (10−20 miles), and long range

(> 20 miles) readings. The Sequential Importance Resampling (SIR) Particle Filter

seemed to perform the best under a wide range of circumstances. The Unscented

Kalman Filter also performed well in many cases. For the near dataset some sim-

pler filtering methods also worked adequately while maintaining low computational

complexity.

5.1 Future Work

We believe that much of the work presented here lends itself to future exploration. We

introduce some possible avenues for future research. We would especially like to see

the possible work mentioned in Section 5.1.3 developed into a commercial product.
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5.1.1 User Interaction

The Particle Filter may lend itself very well to user interaction. Possible ideas are

to allow the user to specify the prior distribution using GUI elements. This could

be placing particles individually, placing groups of particles, or whole distributions of

particles interactively in real time. As the filtering process progresses the user could

introduce particles into unexplored and likely areas or kill off particles in unlikely

areas. In this way the user may be able to look at a terrain map and intuitively

recognize areas of high or low-probability based on elevation, areas of occlusion due

to terrain, and areas of multipath due to terrain. The user may be able to provide

insight that would be very difficult to build into the system and sensor model directly.

5.1.2 Sensor Characterization

Time spent increasing the accuracy and resolution of the test sensor would improve

results. Additionally, more controlled tests would allow a more complete picture of the

sensor character. Using this information the sensor model embedded in the Particle

Filter could be improved. For example more research in the areas of how the sensor

behaves in multipath environments and how the distribution of reading headings

is affected by range and broadcast power of the transmitter. This would enhance

knowledge of the sensor and ultimately improve filtered transmitter estimates.

5.1.3 Radio Sensor Integration

Integrating the sensor on to an airframe would allow further sensor characterization as

mentioned above. It would also allow automation of taking heading readings (for this

work all readings were taken manually). Future work would include demonstrating

better methods to gather readings.
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